Phase Equilibria in the Fe–Nb–O System at 1200°C

KENZO KITAYAMA

Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

Received May 12, 1986; in revised form November 3, 1986

Phase equilibria in the system Fe-Nb-O at 1200°C are established by changing the oxygen partial pressure from 0 to -15.00 in log (P_{02} /atm) and are represented in the Nb₂O₅-Fe-Fe₂O₃ system. In this system, FeNbO₄, FeNb₂O₆, Fe₄Nb₂O₉, niobium-iron spinel, and NbO₂ phases appear and have non-stoichiometric compositions. Lattice constants of the compounds and the solid solutions are determined and discussed with respect to the oxygen partial pressure dependency and to the coexistence of the other compounds. The lattice constant of the spinel solid solution increases with the increasing of the content of "Fe₇Nb₂O₁₂." The standard Gibbs energies of the reactions appearing in the phase diagram are calculated. @ 1987 Academic Press, Inc.

Introduction

Subsolidus phase equilibria of the oxides in the system Fe-Nb-O were experimentally determined at 1180°C, 1 atm, and variable oxygen partial pressures by Turnock (1). As the quenched method was adopted, details of the phase diagram were not clear and the oxygen partial pressures in equilibrium with three solid phases still had large errors. No thermochemical data were given either.

The objectives of the present study are to establish the phase diagram at 1200°C by the thermogravimetry and to calculate the standard Gibbs energy of the reactions found in the diagram. The $NbO_2-Nb_2O_5$ system is reinvestigated at 1200°C in relation to the Fe-Nb-O system.

Experimental

Analytical-grade Fe_2O_3 (99.9%) and Nb_2O_5 (99.9%) are used as starting mate-

rials. Both oxides were previously dried at 900° and 1200°C in air, respectively.

Desired ratios of Nb₂O₅/Fe₂O₃ are obtained by mixing thoroughly in an agate mortar under ethyl alcohol. The mixtures thus obtained are calcined at 1200°C at several times during the intermediate mixing and are treated by the same procedures as in the previous paper (2). A 2- to 6-g sample is used considering the content of the Fe₂O₃ in the mixtures. The apparatus and procedures for controlling the oxygen partial pressures and keeping a constant temperature, the method of the thermogravimetry, and the criterion for the establishment of equilibrium are the same as those described in the previous papers (2–4).

The chemical composition of the niobium-iron spinels is volumetrically determined. Fe^{2+} and total iron content are determined by KMnO₄ standard solution. Nb₂O₅ content is indirectly obtained as the difference between the weight of FeO + Fe_2O_3 and the total weight.

FIG. 1. The relationship between the composition, O/Nb, and the oxygen partial pressure in the Nb_2O_4 - Nb_2O_5 system at 1200°C.

Results and Discussion

(1) Phase Equilibria

NbO₂-Nb₂O₅ System

Many investigations of the binary system $NbO_2-Nb_2O_5$ at high temperatures have been published (5–12). Kovba *et al.* (5) reported the existence of a single phase between $NbO_{2.454}$ and $NbO_{2.474}$ at 1100°–1200°C, and only Nb_2O_{5-x} was found at 900°–1200° (6). At 1300° and 1400°C five discrete compounds, $Nb_{12}O_{29}$, $Nb_{22}O_{54}$, $Nb_{47}O_{116}$, $Nb_{25}O_{62}$, and $Nb_{53}O_{132}$, were observed (11).

In Fig. 1 the relationships between the composition of the sample, O/Nb ratio, and the oxygen partial pressure, $\log (P_{O_2}/\text{atm})$, are shown. The Nb₂O₅ phase shows non-stoichiometric compositions. The composition Nb₂O₅ is maintained by keeping $-\log P_{O_2}$ between 0 and 4.00. From $-\log P_{O_2} = 4.00$ to 12.00, the composition is represented by the equation $X_O/X_{Nb_2O_5} = 0.0045$

log P_{O_2} + 0.018. Here, X_O and $X_{Nb_2O_5}$ are the mole fractions of the subscripted species in the solid solution. From 12.00 to 13.40 in $-\log P_{O_2}$, the composition is represented by the equation $X_O/X_{Nb_2O_5} =$ $-0.02667(\log P_{O_2})^2 - 0.6334 \log P_{O_2} -$ 3.811.

The existence of a nonstoichiometric intermediate phase, Nb₂O_{4.84}, is found from 13.40 to 13.90 in $-\log P_{O_2}$. This phase already has been seen at higher temperatures (7-10). The composition is represented $X_0/X_{Nb_2O_{4.84}} = 0.05 \log P_{O_2} + 0.695$. The powder X-ray patterns of the samples which are made at log $P_{O_2} = -13.00$ and -13.75 are very similar. This was already pointed out at 1350° to 1400°C by Brauer (13) and at 1300°C by Lavrent'ev *et al.* (14).

As shown in Fig. 1, the NbO₂ phase is stoichiometric within experimental errors. But Schäffer *et al.* (7) and Marucco *et al.* (9) reported NbO_{2.024} at 1300°C and NbO_{2.0060} at 1100°C, respectively.

Fe-Nb-O System

Ten samples with Nb₂O₅/Fe₂O₃ mole ratios of 85/15, 8/2, 75/25, 7/3, 1, 45/55, 3/7, 2/8, 1/9, and 5/95 were prepared for use in thermogravimetry.

In Fig. 2 the relationships between the oxygen partial pressure, $-\log(P_{O_2}/\text{atm})$, on the ordinate and the weight change, $W_{0,2}$ $W_{\rm T}$, on the abscissa are shown with six representative samples, 8/2 (a), 7/3 (b), 1 (c), 2/8 (d), 1/9 (e), and 5/95 (f). Here, W_{02} is the weight decrease of the samples from the reference weight in 1 atm O_2 and W_T is the total weight decrease of the sample which might be expected if all the Fe_2O_3 in the sample changed into Fe metal. From Fig. 2, abrupt weight changes are observed at 14.13, 12.53, 12.27, (11.94), 11.00, 8.17, 6.22, 3.83, and 3.50 in $-\log P_{O_2}$. These values correspond to the oxygen partial pressures in equilibrium with the three solid phases and are shown in Fig. 3. The value in parentheses, which is that in equilibrium

with Fe + "FeO" at 1200°C, is tentative. Turnock already pointed out that a liquid phase appears in this region. As the exact isothermal section including the liquid phase could not be established, discussion about this region will be omitted.

The identification of phases is carried out with samples of different starting materials at different conditions of oxygen pressure. Some of these results, obtained by X-ray diffractometry with FeK_{α} rad are shown in Table I. Tokizaki et reported that the crystal form of F depends upon the conditions of the ration, $\log(CO_2/H_2)$, and temperature quench samples prepared at the d conditions of oxygen partial pressur the same columbite-type pattern in the present study.

Based upon the above results from the thermogravimetry and the phase identification, a phase diagram was drawn and is shown in Fig. 3. The diagram is similar to that of Turnock (1) at 1180°C. Dashed lines are the iso-oxygen partial pressure lines in two-phase fields and values are indicated on each line. There are eight phases, Nb_2O_5 (E), Nb_2O_4 (F), $FeNbO_4$ (B), $FeNb_2O_6$ (C), Fe₄Nb₂O₉ (D), "FeO" (W), niobium-iron spinel (M), and α -Fe. These all have nonstoichiometric compositions except for α -Fe and Fe_2O_3 . The composition of F_2 , being richest in FeNb₂O₆, is Fe_{0.28}Nb_{0.72}O₂, which is comparable to $Fe_{0.27}Nb_{0.73}O_2$ at 1180°C. The niobium-iron spinel solid solution also has a wide range of composition, its end composition being Fe_{2.43}Nb_{0.54}O_{4.00}, $\sim 80~mole\%~``Fe_7Nb_2O_{12},''$ which is also identical to that at 1180°C. The small difference in temperatures does not affect these compositions.

Turnock (1) showed that Fe_2O_3 has a nonstoichiometric range, but it cannot be found explicitly because of the sluggish reaction and log $P_{O_2} = -3.50$ is different from -2.94 at which Fe₂O₃ and Fe₃O₄ coexist in equilibrium at 1200°C. Compositions of C₄

nowder		3.60	19
powder		0.68	7
diation,	7/3	14.00	7
$al_{(15)}$	45/55	15.00	8
<i>a</i> . (15)		14.50	10
eNb ₂ O ₆		14.00	7
nrena-		13.00	14
picpa		12.00	15
re. The		8.30	22
ifferent		8.00	18
merent		6.50	23
e show		6.00	23
		2 (0	10

TABLE I **IDENTIFICATION OF PHASE**

Nb₂O₅/Fe₂O₃ $-\log P_{0_2}$ Time (mole ratio) (atm) (hr) Phase 85/15 15.00 8 NbO₂ 8/2 75/25 12.50 8 NbO₂ + Nb₂O₅ 14.50 10 NbO₂ 13.00 14 NbO₂ 12.20 15 Nb₂O₅ + FeNb₂O₆ + FeNb₂O₆ 4.00 21 Nb₂O₅ + FeNbO₄ Nb₂O₅ Nb₂O₅ + FeNbO₄ Nb₂O₅ + FeNb₂O₆ Fe + NbO₂ Fe + NbO₂ + FeNb₂O₆ Fe Fe + FeNb₂O₆ $Fe_4Nb_2O_9 + FeNb_2O_6$ Fe₄Nb₂O₉ + FeNb₂O₆ Sp + FeNb₂O₆ + FeNb₂O₆ Sp Sp + FeNbO₄^a + FeNbO₄ Sp 3.60 2.60 12 7 FeNbO₄ $+ Fe_2O_3$ 0.68 FeNbO₄ Fe₂O₃ 3/7 12.30 15 + Fe₄Nb₂O₉ Fe 11.90 15 FeO + Fe₄Nb₂O₉ 11.20 14 FeO Fe4Nb2O9 + $Fe_4Nb_2O_9$ 10.90 15 Sp 8.30 22 + Fe₄Nb₂O₉ Sp 12.30 1/9 15 Fe + Fe₄Nb₂O₉ 11.90 FeO + Fe₄Nb₂O₉ 15 5/95 9.50 + Sp 15 FeO

^a Tetragonal.

and C_5 and of B_2 and B_3 are not identical, while those in Turnock (1) were illustrated as if these pairs were identical. A compound FeNb₁₁O₂₉, of orthorhombic type, has been reported by Turnov et al. (16) and Brunner and Gruehn (17). According to the present results, the Nb₂O₅ phase has nonstoichiometric composition not only on the Nb_2O_4 side but also on the FeNbO₄ side, where the end composition is $FeNb_{11}O_{29}$ (E_1) .

In Table II the compositions, symbols, and stability ranges in the oxygen partial pressure of the solid solutions, are tabulated together with activities of each component in the solid solution. The activity of the Fe₄Nb₂O₉ component in the solid solution is calculated using the Gibbs-Duhem equation, giving $X_0/X_{\text{Fe}_4\text{Nb}_2\text{O}_9} = 0.0596 \log$

FIG. 2. The relationship between the composition, W_{O_2}/W_T , and the oxygen partial pressure in the system Fe–Nb–O at 1200°C with ratios of Nb₂O₅/Fe₂O₃ of (a) 8/2, (b) 7/3, (c) 1, (d) 2/8, (e) 1/9, and (f) 5/95.

 $P_{\rm O_2}$ + 0.756. The latter equation is derived assuming that the oxygen content in the solid solution changes with the change of the oxygen partial pressure as shown in Table II.

Lattice constants of the compounds are

determined with the aid of the previous data. The values of $FeNb_2O_6$ still have large errors compared with the previous data; therefore, they are not included in Table III. The lattice constants of $FeNbO_4$ prepared in air are almost the same and are

Fig. 2-Continued.

FIG. 3. Phase equilibria in the Fe-Fe₂O₃-Nb₂O₅ system at 1200°C. Dashed lines are the iso-oxygen partial pressure lines in the two-phase areas. Numerical values in the three-phase regions are the oxygen partial pressure in $-\log(P_{O_2}/\text{atm})$ in equilibrium with the three solid phases. Symbols are the same as those in Table II.

TABLE II Compositions, Symbols, Stability Ranges in the Oxygen Partial Pressures, and Activities of Solid Solutions

Component	Composition	Symbol	$-\log P_{O_2}$ (atm)	$\log a_i$
Nb ₂ O ₅	Nb ₂ O _{5.00}	Е	0-4.00	0
	FeNb ₁₁ O ₂₉	E ₁	3.83	_
	Nb ₂ O _{4.95}	E_2	12.27	-0.079
FeNbO₄	FeNbO _{4.00}	В	0	—
	Fe0.95Nb1.05O4.00	B	3.50	—
	Fe _{0.81} Nb _{1.19} O _{4.00}	B ₂	3.83	0
	Fe0.79Nb1.21O4.00	\mathbf{B}_3	6.22	—
FeNb ₂ O ₆	FeNb ₂ O _{6.00}	С	14.13	0
	FeNb ₂ O _{6.00}	Ct	12.53	0
	FeNb ₂ O _{6.00}	C_2	12.27	0
	Fe _{1.02} Nb _{1.99} O _{6.00}	C3	8.15	_
	Fe _{1.08} Nb _{1.95} O _{6.00}	C4	3.83	_
	Fe111Nb19006.00	C ₅	6.22	—
Fe₄Nb ₂ O ₉	Fe4Nb2O9.00	D	12.53	0
	Fe4Nb1.99O9.07	\mathbf{D}_1	(11.94)	-0.0079
	Fe4Nb1.99O9.10	D_2	11.00	-0.042
	Fe4Nb2.01O9.27	\mathbf{D}_3	8.15	-0.306
Fe ₃ O ₄	Fe _{2.97} O _{4.00}	M ₁	3.50	_
	Fe _{2.99} O _{4.00}	M ₂	6.22	-0.014
	Fe _{3.00} O _{4.00}	М	9.14	0
	Fe2.85Nb0.09O4.00	M ₃	8.15	
	Fe2,43Nb0.54O4.00	M ₄	11.00	_
NbO ₂	Fe _{0 28} Nb _{0.72} O ₂	\mathbf{F}_2	14.13	_
	Fe _{0.28} Nb _{0.72} O ₂	F ₁	12.27	

independent of the coexistence of other compounds, Fe_2O_3 and $FeNb_{11}O_{29}$. This might mean that $FeNbO_4$ has no large nonstoichiometric range on the $FeNb_{11}O_{29}$ and Fe_2O_3 sides. Values for $FeNbO_4$ prepared at -3.62 atm from the 75/25 sample and at -6.00 atm from the 3/7 sample are well fit not to an orthorhombic but to a rutile structure. Also, values of $Fe_4Nb_2O_9$ and niobium-iron spinel are not affected by the coexistence of another phase at any oxygen partial pressure.

In Table IV the relationship between the lattice constant and the composition of the spinel solid solution is shown together with the conditions of preparation, starting materials, and lattice constants of tantalumiron spinel. Here, X means the mole fraction of the assumed $Fe_7^{2+}Nb_2^{5+}(or Ta^{5+})O_{12}$. These data are plotted in Fig. 4 together with the niobium-iron spinel data reported by Turnock. The present values change linearly with X up to 0.5 and then slightly

TABLE III The Lattice Constants of the Compounds

Compound	Nb ₂ O ₅ /Fe ₂ O ₃ (mole ratio)	-log P _{O2} (atm)	Coexisting phase	a (Å)	b (Å)	с (Å)	V (Å ³)	Ref.
 FeNbO₄	75/25	0.68	FeNb11029	5.004 ± 0.008	5.622 ± 0.006	4.657 ± 0.007	131.1 ± 0.3	Present
	45/55	0.68	Fe ₂ O ₃	5.007 ± 0.001	5.622 ± 0.001	4.654 ± 0.001	131.0 ± 0.1	Present
	75/25	3.62	FeNb11029	4.723 ± 0.001		3.063 ± 0.003	68.32 ± 0.07	Present
	45/55	3.80	Sp	5.032 ± 0.001	5.647 ± 0.001	4.669 ± 0.001	132.7 ± 0.1	Present
	3/7	6.00	Sp	4.738 ± 0.002		3.058 ± 0.003	68.65 ± 0.09	Present
				5.005	5.613	4.647		(16)
FeNb11O29	75/25	3.62		28.70 ± 0.03	3.828 ± 0.001	20.618 ± 0.001	2266 ± 3	Present
				28.70	3.829	20.01	226.2 + 0.5	(//) D
Fe ₄ Nb ₂ O ₉	45/55	8.50	FeNb ₂ O ₆	5.221 ± 0.003		14.245 ± 0.013	336.3 ± 0.3	Present
	2/8	8.50	Sp	5.216 ± 0.003		14.206 ± 0.020	334.7 ± 0.6	Present
	3/7	11.90	FeO	5.224 ± 0.002		14.211 ± 0.007	335.9 ± 0.3	Present
	45/55	12.00	FeNb ₂ O ₆	5.221 ± 0.002 5.233		14.238 ± 0.009 14.236	336.1 ± 0.3	Present (18)
Sn	3/7	6.00	FeNbO ₄	8.404 ± 0.001			593.5 ± 0.2	Present
υp	3/7	8.00	FeNb ₂ O ₆	8.459 ± 0.001			605.3 ± 0.3	Present
	5/95	8.00	FeNb ₂ O ₆	8.451 ± 0.001			603.5 ± 0.1	Present
	2/8	9.50	Fe₄Nb ₂ O ₉	8.551 ± 0.008			625.2 ± 1.8	Present
	5/95	9.50	FeO	8.479 ± 0.001			609.5 ± 0.2	Present
	5/95	10.90	FeO	8.593 ± 0.002			634.5 ± 0.3	Present
	2/8	10.90	Fe4Nb2O9	8.592 ± 0.001			634.2 ± 0.1	Present

The Compositions of Niobium–Iron Spinel and Tantalum–Iron Spinel and Lattice Constants							
Nb ₂ O ₅ /Fe ₂ O ₃	$-\log P_{O_2}$ (atm)	Xª	a (Å)	Ta ₂ O ₅ /Fe ₂ O ₃	$-\log P_{O_2}$ (atm)	Xª	a (Å)
0/1	9.00	0	8.395	5/95	9.00	(0.22 ± 0.01)	8.456
5/95	9.00	$\begin{array}{l} 0.21 \ \pm \ 0.01 \\ (0.22 \ \pm \ 0.01)^b \end{array}$	8.450	1/9	9.00	(0.43 ± 0.02)	8.517
1/9	9.00	0.43 ± 0.03 (0.44 ± 0.01)	8.515	15/85	11.00	(0.73 ± 0.04)	8.601
5/95°	10.90	(0.77 ± 0.04)	8.593	$2/8^{d}$	11.90	(0.80 ± 0.08)	8.635

TABLE IV

.....

^{*a*} $XFe_7Z_2O_{12} \cdot 3(1 - X)Fe_3O_4 [Z = Nb \text{ or } Ta]$

^b Values in parentheses were calculated from the thermogravimetric data.

"'FeO'' coexists.

^d Fe₄Ta₂O₉ coexists.

curve convexly, while those of Turnock's change linearly but are smaller than the present values. The values of tantalumiron spinel change linearly, too.

From Fig. 3 the lattice constants of the spinel solid solution are expected to be different if the different starting materials were used at the same oxygen partial pressure. In Fig. 5 the lattice constants of the spinel solid solution of different starting

mixtures are shown in relation to the oxygen partial pressure.

(2) The Standard Gibbs Energy of Reactions

On the basis of the established phase diagram, the standard Gibbs energies of reactions which appear in the diagram can be calculated from the equation $\Delta G^{\circ} = -RT \ln K$. Here, R is the gas constant, T the abso-

FIG. 4. The relationship between the lattice constant and the composition, X, of the spinel solid solutions.

FIG. 5. The relationship between the oxygen partial pressure and the lattice constant of samples which were made from different starting compositons.

Reaction	$-\log P_{O_2}^{a}$ (atm)	$-\Delta G^{\circ}$ (kJ)	Correction term
(1) $Nb_2O_4 + 0.42O_2 = Nb_2O_{4.84}$	13.90	164.6	
(2) $Nb_2O_{4.84} + 0.08O_2 = Nb_2O_5$	13.40	26.9	
(3) $Fe + 2NbO_2 + O_2 = FeNb_2O_6$	14.13	398.5	aNbO2 (F2)
(4) $3Fe + FeNb_2O_6 + \frac{3}{2}O_2 = Fe_4Nb_2O_9$	12.53	530.1	
(5) $Fe_{0.28}Nb_{0.72}O_2 + 0.04O_2 = 0.08Nb_2O_5 + 0.28FeNb_2O_6$	12.27	14.0	_
(6) $1.35 \text{FeO} + 0.27 \text{Fe}_4 \text{Nb}_2 \text{O}_9 + 0.11 \text{O}_2 = \text{Fe}_{2.43} \text{Nb}_{0.54} \text{O}_{4.00}$	11.00	35.6	_
(7) $Fe_4Nb_2O_9 + \frac{1}{2}O_2 = FeNb_2O_6 + Fe_3O_4$	8.15	123.5	$\begin{cases} a_{\text{FeNb}_2O_6(C_3)} \\ a_{\text{Fe}_3O_4(M_3)} \end{cases}$
(8) $\text{FeNb}_2O_6 + \frac{1}{3}\text{Fe}_3O_4 + \frac{1}{2}O_2 = 2\text{FeNb}O_4$	6.22	14.2	$\begin{cases} a_{\text{FeNb}_2\text{O}_6(\text{C}_5)} \\ a_{\text{FeNbO}_4(\text{B}_3)} \end{cases}$
(9) $2\text{FeNb}_2\text{O}_6 + \frac{1}{2}\text{O}_2 = 2\text{FeNbO}_4 + \text{Nb}_2\text{O}_5$	3.83	54.0	$\begin{cases} a_{\rm FeNb_2O_6(C_4)} \\ a_{\rm Nb_2O_5(E_1)} \end{cases}$

THE STANDARD GIBBS ENERGIES OF REACTIONS

^a ±0.05.

lute temperature, and K the equilibrium constant of a reaction. The standard state of the activity can be chosen arbitrarily in each solid solution, and the necessary activities of the components for the calculations are tabulated in Table II. Results are shown in Table V. In the last column in the table the "correction term" is listed which needs to be determined in the future in order to calculate ΔG° values accurately. Here, $a_{\text{NbO}_2(\text{F}_2)}$, for example, means the activity of the NbO₂ component at the composition F₂. Therefore, ΔG° values in Table V imply the energies which were obtained assuming that the activities of the "correction term" are unity. The ΔG° value for the reaction Nb₂O₄ + $\frac{1}{2}O_2$ = Nb₂O₅ is calculated as the sum of those for reactions (1) and (2)and is -191.5 kJ/mole. This value is in fairly good agreement with -194.8 kJ/mole, as calculated from the data of Elliott and Gleiser (18).

References

- 1. A. C. TURNOCK, J. Amer. Ceram. Soc. 49, 177 (1966).
- N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975).
- 3. T. KATSURA AND H. HASEGAWA, Bull. Chem. Soc. Japan 40, 561 (1967).

- 4. T. KATSURA AND A. MUAN, Trans. AIME 230, 77 (1964).
- 5. L. M. KOVBA, V. K. TRUNOV, AND Z. YA. POL'S-CHIKOVA, *Izv. Akad. Nauk SSSR, Neorg. Mater.* 3, 403 (1967).
- J. P. DELMAIRE, N. WALLET, AND A. DUQUES-NOY, Compt. Rend. 264, 1290 (1967).
- H. SCHÄFFER, D. BERGNER, AND R. GRUEHN, Z. Anorg. Allg. Chem. 365, 31 (1969).
- 8. J. F. MARUCCO, J. Solid State Chem. 10, 211 (1974).
- 9. J. F. MARUCCO, R. TETOT, P. GERDANIAN, AND C. PICARD, J. Solid State Chem. 18, 97 (1976).
- 10. J. F. MARUCCO, J. Chem. Phys. 70, 644 (1979).
- 11. S. KIMURA, J. Solid State Chem. 6, 438 (1973).
- 12. K. NAITO, N. KAMEGASHIRA, AND S. SASAKI, J. Solid State Chem. 35, 305 (1980).
- 13. G. BRAUER, Z. Anorg. Allg. Chem. 248, 1 (1941).
- 14. V. I. LAVRENT'EV, YA. I. GERASIMOV, AND T. N. REZUKHINA, Dokl. Akad. Nauk SSSR 136, 1372 (1961).
- 15. E. TOKIZAKI, Y. SUGITANI, AND K. NAGASHIMA, Mater. Res. Bull. 21, 231 (1986).
- V. K. TURNOV, L. K. KOVBA, AND Z. YA. POL'S-CHIKOKOVA, Russian J. Inorg. Chem. 13, 786 (1968).
- 17. H. BRUNNER AND R. GRUEHN, Z. Naturforsch. B: Anorg. Chem., Org. Chem. 31, 318 (1976).
- J. F. ELLIOTT AND M. GLEISER, "Thermochemistry for Steelmaking," Vol. 1, Addison-Wesley, Reading, MA (1960).
- 19. J.C.P.D.S. Card No. 16-358.
- 20. J.C.P.D.S. Card No. 22-352.
- F. BERTAUT, L. CORLISS, AND F. FORRAT, Compt Rend. 251, 1733 (1960).